Mapping class in SalvusOpt. This gives a lot of flexibility, for instance, to use different discretizations (e.g., a coarser mesh for the inversion or an event-dependent mesh for the simulation) or model parameterizations (e.g., inverting only for a subset of the physical parameters).%matplotlib inline
%config Completer.use_jedi = False
import osSALVUS_FLOW_SITE_NAME = os.environ.get("SITE_NAME", "local")import matplotlib.pyplot as plt
import numpy as np
import pathlib
import time
import xarray as xr
import salvus.namespace as snnx, ny = 10, 10
x = np.linspace(0.0, 3000.0, nx)
y = np.linspace(-1000.0, 0.0, nx)
xx, yy = np.meshgrid(x, y, indexing="ij")
vp = 1500.0 - yy
rho = 1000.0 - yy
ds = xr.Dataset(
data_vars={
"vp": (["x", "y"], vp),
"rho": (["x", "y"], rho),
},
coords={"x": x, "y": y},
)
ds.vp.T.plot()<matplotlib.collections.QuadMesh at 0x7db28bd64f90>
p = sn.Project.from_volume_model(
path="project",
volume_model=sn.model.volume.cartesian.GenericModel(name="model", data=ds),
load_if_exists=True,
)src = sn.simple_config.source.cartesian.ScalarPoint2D(x=500.0, y=-500.0, f=1.0)
rec = sn.simple_config.receiver.cartesian.collections.ArrayPoint2D(
x=np.linspace(100.0, 2900.0, 10), y=0.0, fields=["phi"]
)
p += sn.Event(event_name="event", sources=src, receivers=rec)
p.viz.nb.domain()ec = sn.EventConfiguration(
waveform_simulation_configuration=sn.WaveformSimulationConfiguration(
end_time_in_seconds=2.0
),
wavelet=sn.simple_config.stf.Ricker(center_frequency=5.0),
)
p += sn.SimulationConfiguration(
name="sim_model",
elements_per_wavelength=2,
tensor_order=4,
max_frequency_in_hertz=10.0,
model_configuration=sn.ModelConfiguration(
background_model=None, volume_models="model"
),
event_configuration=ec,
absorbing_boundaries=sn.AbsorbingBoundaryParameters(
reference_velocity=2000.0,
number_of_wavelengths=3.5,
reference_frequency=5.0,
),
)p += sn.MisfitConfiguration(
name="misfit",
observed_data=None,
misfit_function="L2_energy_no_observed_data",
receiver_field="phi",
)gradients = {}
while not gradients:
gradients = p.actions.inversion.compute_gradients(
simulation_configuration="sim_model",
misfit_configuration="misfit",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=1
),
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
)
time.sleep(2.0)
raw_gradient = sn.UnstructuredMesh.from_h5(gradients["event"])[2025-11-12 22:19:08,216] INFO: Creating mesh. Hang on. [2025-11-12 22:19:08,337] INFO: Submitting job ... [2025-11-12 22:19:08,474] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2025-11-12 22:19:10,691] INFO: Submitting job ... [2025-11-12 22:19:10,828] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished.
raw_gradient. In the widget below, we notice that the sensitivity at the source location and - to a smaller degree - at the receiver locations has significantly higher amplitudes than everywhere else in the domain. This is the result of all energy passing through these points, which is why the waveforms are clearly most sensitive to changes at those locations. However, this clearly does not look like a reasonable model update.raw_gradient<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2808325d0>
VP, but could do the same for RHO.def visualize_gradient(grad, clip=None):
g = grad.model.copy()
mask = np.logical_and(
g.get_element_centroid()[:, 1] > -1000.0,
np.abs(g.get_element_centroid()[:, 0] - 1500.0) < 1500.0,
)
g = g.apply_element_mask(mask)
if clip:
scale = (
clip
* np.max(np.abs(g.elemental_fields["VP"]))
* np.ones_like(g.elemental_fields["VP"])
)
g.elemental_fields["VP"] = np.minimum(g.elemental_fields["VP"], scale)
g.elemental_fields["VP"] = np.maximum(g.elemental_fields["VP"], -scale)
display(g)prior = p.simulations.get_mesh("sim_model")absolute scaling of the physical parameters, there is no difference between both discretizations. Hence the mapped gradient is the same as the raw gradient.map1 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
)
grad1 = map1.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
)
visualize_gradient(grad1, clip=None)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2a5918090>
VP in locations different from the source / receivers.visualize_gradient(grad1, clip=0.1)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2a58a4150>
map2 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
)
grad2 = map2.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad2, clip=0.1)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2a5a5a750>
map3 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
receiver_cutout_radius_in_meters=100.0,
)
grad3 = map3.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad3, clip=0.1)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2a573bd50>
visualize_gradient(grad3, clip=0.8)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2a59a2350>
mesh = p.simulations.get_mesh(simulation_configuration="sim_model")
roi = np.zeros_like(mesh.connectivity)
mask = mesh.points[mesh.connectivity][:, :, 1] < -100.0
roi[mask] = 1.0
mesh.attach_field("region_of_interest", roi)
map4 = sn.Mapping(
inversion_parameters=["VP"],
scaling="absolute",
source_cutout_radius_in_meters=200.0,
region_of_interest=roi,
)
grad4 = map4.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad4, clip=0.8)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2a59c8d50>
map5 = sn.Mapping(
inversion_parameters=["VP"],
scaling="relative_deviation_from_prior",
source_cutout_radius_in_meters=200.0,
region_of_interest=roi,
)
grad5 = map5.adjoint(
mesh=raw_gradient.copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
visualize_gradient(grad5, clip=0.8)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db28079a410>
from salvus.opt.models import UnstructuredModelsmoothed_gradient = UnstructuredModel(
name="smoothed_gradient",
model=p.actions.inversion.smooth_model(
model=grad5.model,
smoothing_configuration=sn.ConstantSmoothing(
smoothing_lengths_in_meters={"VP": [100.0, 50.0]}
),
site_name="local",
ranks_per_job=1,
),
fields=["VP"],
)
visualize_gradient(smoothed_gradient, clip=0.8)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2a5830f90>
forward_wavefield_sampling_interval in WavefieldCompression is thus an important tuning parameter. Depending on the application and meshing strategy a factor between 5 and 100 is typically achieved.gradients = {}
for i in [1, 5, 10, 20]:
gradient_files = {}
while not gradient_files:
gradient_files = p.actions.inversion.compute_gradients(
simulation_configuration="sim_model",
misfit_configuration="misfit",
wavefield_compression=sn.WavefieldCompression(
forward_wavefield_sampling_interval=i
),
events=p.events.list(),
site_name=SALVUS_FLOW_SITE_NAME,
ranks_per_job=4,
)
time.sleep(2.0)
gradients[i] = sn.UnstructuredMesh.from_h5(gradient_files["event"])[2025-11-12 22:19:21,864] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2025-11-12 22:19:21,888] INFO: Submitting job ... [2025-11-12 22:19:21,955] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2025-11-12 22:19:24,150] INFO: Submitting job ... [2025-11-12 22:19:24,197] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2025-11-12 22:19:28,348] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2025-11-12 22:19:28,372] INFO: Submitting job ... [2025-11-12 22:19:28,463] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2025-11-12 22:19:30,580] INFO: Submitting job ... [2025-11-12 22:19:30,628] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished. [2025-11-12 22:19:36,851] INFO: The following events have been simulated before, but checkpoints are not available for this combination of `site_name` and `ranks_per_job` and wavefield compression settings. They will be run again: ['event'] [2025-11-12 22:19:36,871] INFO: Submitting job ... [2025-11-12 22:19:36,964] INFO: Launched simulations for 1 events. Please check again to see if they are finished. [2025-11-12 22:19:39,098] INFO: Submitting job ... [2025-11-12 22:19:39,257] INFO: Launched adjoint simulations for 1 events. Please check again to see if they are finished.
for i in [1, 5, 10, 20]:
grad = map5.adjoint(
mesh=gradients[i].copy(),
prior=prior,
event=p.waveforms.get(data_name="sim_model", events="event")[0],
)
print(f"----------------------------------------------------------")
print(f"Mapped gradient with sampling interval {i}:")
visualize_gradient(grad, clip=0.8)---------------------------------------------------------- Mapped gradient with sampling interval 1:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2a577cdd0>
---------------------------------------------------------- Mapped gradient with sampling interval 5:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2a583ed10>
---------------------------------------------------------- Mapped gradient with sampling interval 10:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db2803d3b10>
---------------------------------------------------------- Mapped gradient with sampling interval 20:
<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x7db28046c650>