import numpy as np
import xarray as xr
import salvus.namespace as snsn.layered_meshing.mesh_from_domain(
domain=sn.domain.dim2.BoxDomain(x0=0.0, x1=1.0, y0=0.0, y1=1.0),
model=sn.material.elastic.Velocity.from_params(rho=1.0, vp=1.0, vs=0.5),
mesh_resolution=sn.MeshResolution(reference_frequency=10.0),
)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78110e73e750>
# We cant actually access any material much faster by letting salvus figure
# out which one we want by the arguments supplied
# m0 = sn.material.elastic.Velocity.from_params(rho=1.0, vp=1.0, vs=0.5)
m0 = sn.material.from_params(rho=1.0, vp=1.0, vs=0.5)xarray Dataset,
which can be queried by the materials .ds variable.m0.ds<xarray.Dataset> Size: 24B
Dimensions: ()
Data variables:
RHO float64 8B 1.0
VP float64 8B 1.0
VS float64 8B 0.5<xarray.Dataset> Size: 24B
Dimensions: ()
Data variables:
RHO float64 8B 1.0
VP float64 8B 1.0
VS float64 8B 0.5xarray representation of the material
parameters we specified. You might notice that no coordinates are specified
here. This is no problem, as the coordinates will be "realized" when the
model is eventually used in the meshing process. Realization in this context
refers to ensuring that all coordinates present in a layered model are
consistent with the spatial dimension and domain they are being used within.
As no coordinates are present here, the realization stage will thus ensure
that the model values are propagated to all locations in the host domain. In
the future we will see how realization can be exploited to define models on
only a subset of a domain's coordinate axes, and additionally define them
relative to either the domain bounds, or to the bounds of a host layer.m0_lame = sn.material.from_params(lam=0.5, mu=0.25, rho=1.0)print(sn.material.elastic.Velocity.from_material(m0_lame))Salvus material: salvus.material.elastic.isotropic.Velocity
Physics: isotropic, elastic
Components:
RHO: Constant parameter
Spatially constant
Value: 1
VP : Constant parameter
Spatially constant
Value: 1
VS : Constant parameter
Spatially constant
Value: 0.5
.to_wavelength_oracle() that will automatically compute the critical
parameter required to determine the required mesh size. For isotropic elastic
models this is simply the model's shear wave velocity, but for less symmetric
materials the oracle may instead be a combination of the material's
parameters.print(f"{m0.to_wavelength_oracle()}\n{m0_lame.to_wavelength_oracle()}")Constant parameter Spatially constant Value: 0.5 Constant parameter Spatially constant Value: 0.5
m0_lame in
terms of , , and , Salvus automatically computed it for us.
The presence of this oracle for each parameterization means that the tedious
process of manually computing the minimum wavelength is a thing of the past
-- Salvus will take care of this for you.LayeredModel to tell Salvus that we are ready to proceed to the next stage
of mesh generation.lm_0 = sn.layered_meshing.LayeredModel(m0)LayeredModel object has some interesting properties. First off, we can
query the models it contains and see our material stored therein. Note that
the models are presented as a list with one element; again, the utility of
this will be apparent later on.lm_0.models[salvus.material.elastic.isotropic.Velocity]
.interfaces property. Here, we see an empty list.lm_0.interfaces[]
.complete() method on
the layered model and inspect the interfaces added.print("\n\n".join(str(s) for s in lm_0.complete().interfaces))Hyperplane(da=<xarray.DataArray ()> Size: 8B
array(0.)
Attributes:
reference_elevation: Depth(value=0.0), extender=<cyfunction extrude_like_and_pad at 0x781112f84f40>, interpolation_method='linear')
Hyperplane(da=<xarray.DataArray ()> Size: 8B
array(0.)
Attributes:
reference_elevation: Height(value=0.0), extender=<cyfunction extrude_like_and_pad at 0x781112f84f40>, interpolation_method='linear')
strata.print("\n\n".join(str(s) for s in lm_0.complete().strata))Hyperplane(da=<xarray.DataArray ()> Size: 8B
array(0.)
Attributes:
reference_elevation: Depth(value=0.0), extender=<cyfunction extrude_like_and_pad at 0x781112f84f40>, interpolation_method='linear')
Salvus material: salvus.material.elastic.isotropic.Velocity
Physics: isotropic, elastic
Components:
RHO: Constant parameter
Spatially constant
Value: 1
VP : Constant parameter
Spatially constant
Value: 1
VS : Constant parameter
Spatially constant
Value: 0.5
Hyperplane(da=<xarray.DataArray ()> Size: 8B
array(0.)
Attributes:
reference_elevation: Height(value=0.0), extender=<cyfunction extrude_like_and_pad at 0x781112f84f40>, interpolation_method='linear')
i0, i1 = lm_0.complete().interfaces
print(i0.da.reference_elevation)
print(i1.da.reference_elevation)Depth(value=0.0) Height(value=0.0)
Domain object. For now, let's
just use a simple 2-D Box domain.d_2d = sn.domain.dim2.BoxDomain(x0=0, x1=1, y0=0, y1=1)
d_2d.plot()MeshResolution object.
Here we can set the desired elements per wavelength, reference frequency, and
order of model representation as follows:mr = sn.MeshResolution(
reference_frequency=2.0, elements_per_wavelength=1.5, model_order=2
)mesh_from_domain function as follows:mesh = sn.layered_meshing.mesh_from_domain(
domain=d_2d, model=lm_0, mesh_resolution=mr
)
mesh<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78112d128190>
LayeredModel is optional for models with only 1 layer and no explicitly
defined interfaces. Indeed, executing the above cell with the m0 model
instance directly achieves the same result.sn.layered_meshing.mesh_from_domain(domain=d_2d, model=m0, mesh_resolution=mr)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78112d1bf850>
d_3d = sn.domain.dim3.BoxDomain(x0=0, x1=1, y0=0, y1=1, z0=0, z1=1)
sn.layered_meshing.mesh_from_domain(domain=d_3d, model=m0, mesh_resolution=mr)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78112d1a2790>
vp_grad = xr.DataArray(
np.linspace(1.0, 2.0, 11), [("y", np.linspace(1.0, 0.0, 11))]
)
m1 = sn.material.from_params(rho=1.0, vp=vp_grad, vs=0.5 * vp_grad)sn.layered_meshing.mesh_from_domain(domain=d_2d, model=m1, mesh_resolution=mr)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78112d09ad90>
sn.layered_meshing.mesh_from_domain(domain=d_3d, model=m1, mesh_resolution=mr)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78112d14ef10>
"y" coordinate above. "y" is indeed the vertical
coordinate in 2-D domains, and to get this in 3-D we simply need to rename
the coordinate.vp_grad_z = vp_grad.rename({"y": "z"})
m1_z = sn.material.from_params(rho=1.0, vp=vp_grad_z, vs=0.5 * vp_grad_z)
sn.layered_meshing.mesh_from_domain(
domain=d_3d, model=m1_z, mesh_resolution=mr
)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78110c0de290>
sn.layered_meshing.mesh_from_domain(
domain=d_3d,
model=sn.material.from_params(rho=1.0, vp=vp_grad, vs=0.5 * vp_grad_z),
mesh_resolution=mr,
)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78112d0609d0>
"v" (for "vertical"), which will map between y and z
depending on the domain's dimension.vp_grad_v = xr.DataArray(
np.linspace(1.0, 2.0, 11), [("v", np.linspace(1.0, 0.0, 11))]
)
m1_v = sn.material.from_params(rho=1.0, vp=vp_grad_v, vs=0.5 * vp_grad_v)# 2d
sn.layered_meshing.mesh_from_domain(
domain=d_2d, model=m1_v, mesh_resolution=mr
)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78110bf75c90>
# 3d
sn.layered_meshing.mesh_from_domain(
domain=d_3d, model=m1_v, mesh_resolution=mr
)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78110bf76ed0>
m2_l0 = sn.material.from_params(rho=0.5, vp=0.5)
m2_l1 = m1_vm2_i0 = sn.layered_meshing.interface.Hyperplane.at(0.5)LayeredModel object with a list of strata, defined
in a top-down order.lm_2 = sn.layered_meshing.LayeredModel([m2_l0, m2_i0, m2_l1])sn.layered_meshing.mesh_from_domain(
domain=d_2d, model=lm_2, mesh_resolution=mr
)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78110beb4750>
sn.layered_meshing.mesh_from_domain(
domain=d_3d, model=lm_2, mesh_resolution=mr
)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78112d2f6010>
x = np.linspace(0, 1, 51)
m3_i0 = sn.layered_meshing.interface.Curve.from_points(
x,
np.sin(2 * np.pi * x) * 0.1 - 0.1,
reference_elevation=sn.layered_meshing.interface.Depth(0.0),
axis="x",
)
m3_i1 = sn.layered_meshing.interface.Curve.from_points(
x,
np.sin(np.pi * x) * 0.2,
reference_elevation=sn.layered_meshing.interface.Depth(0.5),
axis="x",
)lm_3 = sn.layered_meshing.LayeredModel([m3_i0, m2_l0, m3_i1, m2_l1])sn.layered_meshing.mesh_from_domain(
domain=d_2d, model=lm_3, mesh_resolution=mr
)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78112d467190>
lm_3_z = sn.layered_meshing.LayeredModel([m3_i0, m2_l0, m3_i1, m2_l1])
sn.layered_meshing.mesh_from_domain(
domain=d_3d, model=lm_3_z, mesh_resolution=mr
)<salvus.mesh.data_structures.unstructured_mesh.unstructured_mesh.UnstructuredMesh object at 0x78110b588150>